Marasmius Fr. fruiting in response to climatic factors in forest remnants Ecoregion Lachuá, Alta Verapaz

Authors

  • R. Sunum Herbario BIGU
  • M. Quezada Herbario USCG, Centro de Estudios Conservacionistas
  • D. Bustamante Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala

DOI:

https://doi.org/10.54495/Rev.Cientifica.v25i2.91

Keywords:

Marasmius Fr., fructification, climatic factors, forest remmants, Ecoregion Lachuá

Abstract

Fungi of genus Marasmius Fr. are important litter decomposers and reported as abundant in tropics. Lachuá Ecoregion is the largest remaining tropical forests in Guatemala, and the most threatened by habitat loss due to the agricultural advance. It has been determined that
over the past five years 75% of the original coverage outside protected areas in the ecoregion has been lost. This loss is mainly attributed to increased agriculture activity. These changes caused by the loss of plant cover influence the microclimatic conditions that depend on fungi to reproduce. This study is the first approach to understand how this group of fungi respond to currency fluctuations caused by changes in climatic conditions and vulnerability to habitat loss. Relationship of temperature, relative humidity, precipitation, temporality and patch
size with Marasmius fruit bodies production were evaluated. The study was carried out in eight forest patches in the rainy season in 2010 and 2011 in Lachuá Ecoregion. 98 specimens of 56 morphospecies and 2 species were colected. The highest cumulative richness (r) and cumulative frequency (a) of fruit bodies were presented in June (r =16, a = 21) and Santa Lucia Lachuá locality (r =15, a = 16). Marasmius composition is influenced by temporality. June to August were the months with higher number of shared species, decreasing considerably in October and November. No change was observed in Marasmius composition allied to patch size, however spatially there is a difference between patches surrounded by coverage areas and patches surrounded by open areas. This shows that genera responds to changes in habitat. These changes in cumulative richness and abundance of fungi over time and space, can be used as disturbance indicators. This information allows proposed monitoring of this genera
over time to produce a management plan for the area.

Downloads

Download data is not yet available.

References

Arnolds, E. (1995). Problems in measurements of species diversity of macrofungi. In D. Allsopp, R. Colwell, y D. Hawksworth (Eds.), Microbial Diversity and Ecosystem Function (pp. 337–353). Wallingfor: CAB International.

Arteaga, B. & Moreno, C. (2006). Los hongos comestibles silvestres de Santa Catarina del Monte, Estado de México. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 12(2), 125–131.

Avendaño, C. (2002). Diversidad de escarabajos coprófagos (Coleoptera: Scarabaeidae: Scarabaeinae) en un paisaje tropical de la Región Lachuá, Guatemala (Tesis de Maestría).

Colegio de la Frontera Sur, México.Ávila, R. (2004). Estudio base para el programa de monitoreo de la vegetación en la zona de influencia del Parque Nacional Laguna Lachuá (Tesis de Licenciatura). Universidad de San Carlos de Guatemala. Guatemala.

Braga–Neto, R. (2006). Diversidade e padroès de distribuiçào espacial de fungos de liteira sobre o solo em florestas de terra firme na amazònia central (Tesis de Doctorado). Universidade Federal do Amazonas, Manaus, Brasil.

Braga–Neto, R., Costa, R., Magnusson, W., Zuquim, G. & Volkmer, C. (2008). Leaf litter fungi in a Central Amazonian forest: the influence of rainfall, soil and topography on the distribution of fruiting bodies. Biodiversity and Conservation, 17, 2701–2712. https://doi.org/10.1007/s10531-007-9247-6 DOI: https://doi.org/10.1007/s10531-007-9247-6

Burnham, K. & Anderson, D. (2002). Model selection and multi–model inference: a practical information–theoretic apartproach. New York: Springer.

Buyck, B., Laessøe, T., Meyer, M. & Hofstetter, V. (2010). Collecting the neglected kingdom: Guidelines for the field mycologist with emphasis on the larger fungi. In J. Eymann, J. Degreef, Ch. Häuser, J. Monje, Y. Samyn, & D. VandenSpiegel (Eds.), Manual on field recording techniques and protocols for All Taxa Biodiversity Inventories and Monitoring, Part. 1 (pp. 308–330). Nyon, Suecia: European Distributed Institute of Taxonomy.

Calonge, D. (1990). Setas (Hongos) Guía Ilustrada (2da. Ed.). Madrid: Ediciones Mundi–Prensa.

Cannon, P. & Kirk, P. (2007). Fungal families of the world (tenth ed.). Wallingford, United Kingdom: CAB International.

Chao, A. & Jost, L. (2012). Coverage–based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547. https://doi.org/10.1890/11-1952.1 DOI: https://doi.org/10.1890/11-1952.1

Consejo Nacional de Áreas Protejidas (2003). Plan Maestro del Parque Nacional Laguna Lachuá. Recuperado de: http://www.conap.gob.gt/ Members/admin/documentos/documentos-centro-de-documentacion/planes-maestros/parque-20nacional20laguna-20de-20lachua.pdf

Cooke, W. (1948). A survey of literature on fungus sociology and ecology. Ecology 29, 376–382. https://doi.org/10.2307/1930998 DOI: https://doi.org/10.2307/1930998

Crawley, M. (2006). The R Book. London, United Kingdom: John Wiley & Sons.

Didham, R. & Lawton, J. (1999). Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica, 31(1), 17–30. https://doi.org/10.2307/2663956 DOI: https://doi.org/10.1111/j.1744-7429.1999.tb00113.x

Didham, R., Ghazoul, J., Stork, N. & Davis, A. (1996). Insects in fragmented forest: a functional approach. Perspectives Elsevier Science, 11(6), 255–260. https://doi.org/10.1016/0169-5347(96)20047-3 DOI: https://doi.org/10.1016/0169-5347(96)20047-3

Dighton, J. & Mason, P. (1985) Mycorrhizal dynamics during forest tree development. In D. Moore, L. Casselton, D. Wood & J. Frankland (Eds), Developmental Biology of Higher Fungi (pp.117–139). Cambridge, UK: Cambridge,University Press.

Egli, S., Ayer, F. & Chatelain, F. (1997). Die Beschreibung der Diversitaet von Makromyzeten. Erfahrungen aus pilzoekologischen Langzeitstudien Im Pilzreservat La Chaneaz, FR. Mycologia Helvetica 9: 19–32.

Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2011). Situación de los Bosques del Mundo.

Ficha informativa de los humedales RAMSAR. (2004). Sitio Eco–región Lachuá. Recuperado de http://es.scribd.com/doc/72119085/Ficha–RAMSAR–Lachua

Franco–Molano, A., Aldana, R. & Halling, R. (2000). Setas de Colombia (Agaricales, Boletales y otros hongos) Guía de Campo. Medellín, Colombia: COLCIENCIAS.

Gibbs, H., Ruesch, A., Achard, F., Clayton, M., Holmgren, P., Ramankutty, N., et al. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Aca Sci EUA, 107, 16732–16737. https://doi.org/10.1073/pnas.0910275107 DOI: https://doi.org/10.1073/pnas.0910275107

Gilliam, M. (1976). The genus Marasmius in the Northeastern United Statesand adjacent Canada. Mycotaxon, 4, 1–44.

Huhndorf, S., Lodge, J., Wang, C. & Stokland, J. (2004). Macrofungi on woody substrata. In L. G. Mueller, G. Bills & M. Foster (Eds.), Biodiversity of fungi. Inventory and Monitoring Methods (pp. 159–172). London: Elsevier.

Hurtado, D. (2008). Dinámicas Agrarias y Producción Campesina en la Globalización: El Caso de Alta Verapáz, 1970-2007. Guatemala: F&G Editores.

Instituto de Transformación de Conflictos para la Construcción de la Paz en Guatemala. (2009). Conflicto y Uso de Tierra. Nuevas Expresiones de Conf lictividad Agraria en Guatemala. Universidad Rafael Landívar: Guatemala.

Kindt, R. & Coe, R. (2005). Tree Diversity Analysis. A manual and software for common statistical methods for ecological and biodiversity studies. Nairobi, Kenya: World Agroforestry Centre (ICRAF).

Kutner, M., Nachtsheim, C., Neter, J. & Li, W. (2005). Applied Linear Statistical Models (5th ed.). New York: McGraw–Hill.

Lodge, J., Chapela, I., Samuels, G., Uecker, F., Desjardin, D., Horak, E., et al (1996). Diversidad mundial y regional de hongos. En H. Hernández, A. García, F. Alvarez y M. Ulloa, Enfoque contemporáneos para el estudio de la biodiversidad (pp. 291–304). México: Instituto de Biología, UNAM.

Magan, N. (2008). Ecophysiology: Impact of enviroment on growth, synthesis of compatible solutes an enzyme production. In L. Boddy, J. Frankland, y P. van West, Ecology of Saprotrophic Basidiomycetes (pp. 63–78). London: Elsevier. https://doi.org/10.1016/S0275-0287(08)80006-9 DOI: https://doi.org/10.1016/S0275-0287(08)80006-9

Manachère, G. (1980). Conditions essential for controlled fruiting of macromycetes a review. Transactions of the British Mycological Society, 75, 255–270. DOI: https://doi.org/10.1016/S0007-1536(80)80088-X

Mata, M. (1999). Hongos de Costa Rica (Vol. 1). Santo Domingo de Heredia: INBIO.

Mata, M. (2011). Manual recolección, descripción y preservación de macrohongos. San José, Costa Rica: INBIO.

Monzón, R. (1999). Estudio general de los recursos agua, suelo y uso de la tierra en el Parque Nacional Laguna Lachuá y su zona de influencia, Cobán, Alta Verapaz (Tesis de Licenciatura). Universidad de San Carlos de Guatemala. Guatemala, Guatemala.

Moore, D., Gange, A., Gange, E. & Boddy, L. (2008). Fruit bodies, their production and development in relation to enviroment. In L. Boddy, J. Frankland, y P. van West (Eds.), Ecology of Saprotrophic Basidiomycetes (pp. 79–103). London: Elsevier. https://doi.org/10.1016/S0275-0287(08)80007-0 DOI: https://doi.org/10.1016/S0275-0287(08)80007-0

Pinna, S., Gévry, M., Coté, M. & Sirois, M. (2010). Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canadá. Forest Ecology and Management, 260, 294–301. https://doi.org/10.1016/j.foreco.2010.04.024 DOI: https://doi.org/10.1016/j.foreco.2010.04.024

Quezada, M. (2005). Análisis de la diversidad y distribución de Macrohongos (Órdenes Agaricales y Aphylloporales) en relación con los paisajes antropogénicos en la zona de influencia del Parque Nacional Laguna Lachuá, Cobán, Alta Verapaz (Tesis de Licenciatura). Universidad de San Carlos de Guatemala.

R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Recuperado de http://www.R–project.org/.

SAFRINET. (2010). Collecting and processing of field material. In Baxter, A., y Van der Linde, P (Eds.), Collecting and Preserving Fungi. A manual for Mycology (pp. 13–19). Johanesburg: BioNET Interntional.

Secretaria de Planificación y Programación de la Presidencia. (2011). Plan de Desarrollo Integral Franja Transversal del Norte. Diagóstio Territorial. Tomo I. (SEGEPLAN)

Shapiro S. & Wilk, M. (1965). An analysis of variance test for normality. Biométrica, 52(3), 591–9. https://doi.org/10.2307/2333709 DOI: https://doi.org/10.2307/2333709

Singer, R . (1976). Mara smieae (Basidiomycetes–Tricholomataceae). Flora Neotropica. Nueva York, EUA: The New York Botanical Garden.

Singer, R. (1986). The Agaricales in modern taxonomy (4th ed). Germany: Koeltz Scientific Books.

Slankis, V., (1974). Soil factors influencing formation of mycorrhizae. Ann. Rev. Phytopathol. 12, 437–457. https://doi.org/10.1146/annurev.py.12.090174.002253 DOI: https://doi.org/10.1146/annurev.py.12.090174.002253

Smith, V. & Bradford, M. (2003). Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time. Applied Soil Ecology, 24, 197–203. https://doi.org/10.1016/S0929-1393(03)00094-5 DOI: https://doi.org/10.1016/S0929-1393(03)00094-5

Straatsma, G., Ayer, F. & Egli, S. (2001). Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycological Research, 105(5), 515–523. https://doi.org/10.1017/S0953756201004154 DOI: https://doi.org/10.1017/S0953756201004154

Tan, Y., Desjardin, D., Perry, B., Vikineswary, S. & Noorlidah, A. (2009). Marasmius sensu stricto in Peninsular Malaysia. Fungal Diversity, 37, 9-100.

Tlalka, M., Bebber, D., Darrah, P. & Watkinson, S. (2008). Mycelial networks: nutrient uptake, translocation and role in ecosystems. In L. Boddy, J. Frankland, y P. van West (Eds.), Ecology of Saprotrophic Basidiomycetes (pp. 43-62). London: Elsevier. https://doi.org/10.1016/S0275-0287(08)80005-7 DOI: https://doi.org/10.1016/S0275-0287(08)80005-7

Tsujino, R., Sato, H., Imamura, A. & Yumoto, T. (2009). Topography–emergence of fungal fruiting bodies in warm temperate evergreen broad–leaved forests on Yakushima Island, Japan. Mycoscience, 5, 388–399. https://doi.org/10.1007/S10267-009-0494-0 DOI: https://doi.org/10.1007/S10267-009-0494-0

Vogt, K., Edmonds, R. & Grier, C. (1981). Biomass and nutrient concentrations of sporocar ps produced by mycorrhizal and decomposer fungi in Abies amabilis stands. Oecologia 50: 170–175. https://doi.org/10.1007/BF00348033 DOI: https://doi.org/10.1007/BF00348033

Vogt, K., Bloomfield, J., Ammirati, J. & Ammirati, S. (1992). Sporocarp production by Basidiomycetes, with emphasis on Forest Ecosystems. In G. Carroll & D. Wicklow, (Eds), The Fungal Community; its organization and role in the ecosystem (pp. 563 – 581). Marel Dekker : New York.

Walker, G. & White, N. (2005). Fungal growth and reproduction. In K. Kavanagh (Ed.), Fungi, biology and applications (pp. 26–33). Chichester, England: John Wiley & Sons.

Zuur,A., Ieno, E. & Smith, G. (2007). Analysing Ecological Data. New York, USA: Springer. https://doi.org/10.1007/978-0-387-45972-1 DOI: https://doi.org/10.1007/978-0-387-45972-1

Published

2015-12-31

How to Cite

Sunum, R., Quezada, M. ., & Bustamante, D. . (2015). Marasmius Fr. fruiting in response to climatic factors in forest remnants Ecoregion Lachuá, Alta Verapaz. Revista Científica, 25(2), 59–75. https://doi.org/10.54495/Rev.Cientifica.v25i2.91

Issue

Section

Artículos originales