Secondary metabolites anda cyanotoxins produced by cyanobacteria from lake Atitlán

Authors

  • Edwin Axpuaca-Aspuac Faculty of Chemistry and Pharmaceutical Sciences, University of San Carlos of Guatemala
  • Erick Estrada-Palencia Faculty of Chemistry and Pharmaceutical Sciences, University of San Carlos of Guatemala
  • Balmore Valladares-Jovel Faculty of Chemistry and Pharmaceutical Sciences, University of San Carlos of Guatemala
  • Bessie Oliva-Hernández Faculty of Chemistry and Pharmaceutical Sciences, University of San Carlos of Guatemala
  • Elisandra Hernández-Hernández Faculty of Chemistry and Pharmaceutical Sciences, University of San Carlos of Guatemala
  • Francisco Pérez-Sabino Faculty of Chemistry and Pharmaceutical Sciences, University of San Carlos of Guatemala

DOI:

https://doi.org/10.54495/Rev.Cientifica.v27i1.71

Keywords:

cyanobacterial blooms, Limnoraphis robusta, Microcystin-LR

Abstract

Extensive cyanobacterial blooms have occurred in Atitlan lake since 2008, being Limnoraphis robusta (Parakutty) the most abundant species recorded. It is generally accepted that these blooms are caused by the rising levels of pollution and climatic variations in the basin. However, it was unknown if the lake cyanobacteria were capable of producing toxins or beneficial secondary metabolites. Four groups of secondary metabolites were investigated in L. robusta, which was isolated and cultivated in the laboratory. Cyanotoxins were analyzed from phytoplankton biomass collected in lake Atitlan. Biomass samples were collected with the aid of a phytoplankton net in three different sites of the lake surface. This was carried out during three field trips conducted between 2011 and 2012. Cyanotoxins were analyzed by liquid chromatography coupled to mass spectrometry (LC/MS). Microcystin-LR was found in low concentrations in two biomass samples collected in October 2012 (one in a non-quantifiable concentration and the other of 20.1 ng / g of dry biomass). L. robusta was the dominant phytoplanctonic species. Positive results were obtained for the tests of flavonoids, saponins and anthraquinones through phytochemical tests performed on the extracts of the biomass cultivated in the laboratory. Alkaloids were not found. The low concentration levels of microcystin-LR found in the biomass collected in the lake surface do not pose a risk to the local human population. Nevertheless, it was proven that cyanobacteria in Atitlan lake are capable of producing microcystins-LR. The positive results, regarding the presence of saponins, flavonoids and anthraquinones in L. robusta, are promising for the quest of metabolites
with biological activity and possible applications in biotechnology.

Downloads

Download data is not yet available.

References

Abed, R.M.M., Dobretsov, S., & Sudesh, K. (2008). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12. https://doi.org/10.1111/j.1365-2672.2008.03918.x DOI: https://doi.org/10.1111/j.1365-2672.2008.03918.x

Carmichael, W.W. (1994). The toxins of cyanobacteria. Scientific American, 270(1), 78-86. https://doi.org/10.1038/scientificamerican0194-78 DOI: https://doi.org/10.1038/scientificamerican0194-78

Falconer, I.R. (1991). Tumor Promotion and Liver Injury Caused by Oral Consumption of Cyanobacteria. Environmental Toxicology and Water Quality, 6(2), 177-184. https://doi.org/10.1002/tox.2530060207 DOI: https://doi.org/10.1002/tox.2530060207

Ferrão-Filho, A. da S., Soares, M.C.S., Freitas Magalhães, V., & Azevedo, S.M.F.O. (2009). Biomonitoring of cyanotoxins in two tropical reservoirs by cladoceran toxicity bioassays. Ecotoxicology and Environmental Safety, 72(2), 479-489. https://doi.org/10.1016/j.ecoenv.2008.02.002 DOI: https://doi.org/10.1016/j.ecoenv.2008.02.002

Jiménez, J.I., Vansach, T., Yoshida, W.Y., Sakamoto, B., Pörgzgen, P., & Horgen, D. (2009). Halogenated Fatty Acid Amides and Cyclic Depsipeptides from an Eastern Caribbean Collection of the Cyanobacterium Lyngbya majuscule. Journal of Natural Products, 72(9), 1573-1578. https://doi.org/10.1021/np900173d DOI: https://doi.org/10.1021/np900173d

Harrison, P.J., & Berges, P.A. (2005). Marine culture media. In R.A. Andersen (Ed.), Algal culturing techniques. (pp. 21-34). Burlington, MA: Elsevier Academic Press. https://doi.org/10.1016/B978-012088426-1/50004-4 DOI: https://doi.org/10.1016/B978-012088426-1/50004-4

Hengfeng, M. & Tao, W. (2009). The mechanisms of ozonation on cyanobacteria and its toxins removal. Separation and Purification Technology, 66(1), 187-193. https://doi.org/10.1016/j.seppur.2008.11.008 DOI: https://doi.org/10.1016/j.seppur.2008.11.008

Komarek, J., Zapomelova, E., Smarda, J., Kopecky, J., Rejmankova, E., Woodhouse, J.,... Komarkova, J. (2013) Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from lake Atitlan, Guatemala, with a description of Limnoraphis gen. nov. Fottea, Olomouc, 13(1), 39-52. https://doi.org/10.5507/fot.2013.004 DOI: https://doi.org/10.5507/fot.2013.004

Krishnamurthy, T., Carmichael, W.W., & Sarver, E.W. (1986) Toxic peptides from freshwater cyanobacteria (blue-green algae). Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon, 24(9), 865-873. https://doi.org/10.1016/0041-0101(86)90087-5 DOI: https://doi.org/10.1016/0041-0101(86)90087-5

La Bastille, A. (1988). Lago de Atitlán. Nueva York, NY: West of the Wind Publications.

Laboratorio de investigación de productos naturales. (2005) Manual de operaciones. tamizaje fitoquímico. Guatemala: Universidad de San Carlos de Guatemala, Facultad de Ciencias Químicas y Farmacia, Laboratorio de investigación de productos naturales.

Lambert, T.W., Boland, M.P., Holmes, C.E.B., & Hrudey, S.E. (1994). Quantitation of the microcystin hepatotoxins in water at environmentally relevant concentrations with the protein phosphate bioassay. Environmental Science and Technology, 28(4), 753-755. https://doi.org/10.1021/es00053a032 DOI: https://doi.org/10.1021/es00053a032

Oliva, B., Pérez-Sabino, J. F., Del Cid, B., Martínez F. J., & Valladares, B. (2010). Estudio de contaminantes ecotóxicos en agua y organismos acuáticos del Lago de Atitlán. (Inf-2009-064). Guatemala: Universidad de San Carlos de Guatemala, Dirección General de Investigación, Facultad de Ciencias Químicas y Farmacia.

Molica, R., Onodera, H., García, C., Rivas, M., Andrinolo, D., Nascimento, S., …Lagos, N. (2002). Toxins en the freshwater cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) isolated from Tabocas reservoir in Caruaru, Brazil, including demonstration of a new saxitoxin analogue. Phycologia, 41(6), 606-611. https://doi.org/10.2216/i0031-8884-41-6-606.1 DOI: https://doi.org/10.2216/i0031-8884-41-6-606.1

Orjala, J., & Gerwick, W. (1997). Two quinoline alkaloids from the Caribbean cyanobacterium Lyngbya majuscula. Phytochemistry, 45(5), 1080-1090. https://doi.org/10.1016/S0031-9422(97)00084-8 DOI: https://doi.org/10.1016/S0031-9422(97)00084-8

Osborne, N., Seawright, A., & Shaw, G. (2008). Dermal toxicology of Lyngbya majuscula, from Moreton Bay, Queensland, Australia. Harmful Algae, 7(5), 584-589. https://doi.org/10.1016/j.hal.2007.12.022 DOI: https://doi.org/10.1016/j.hal.2007.12.022

Oshima, Y. (1995). Post column derivatization liquid chromatography method for paralytic shell fish toxins. Journal of AOAC International, 78, 528-532. https://doi.org/10.1093/jaoac/78.2.528 DOI: https://doi.org/10.1093/jaoac/78.2.528

Pérez-Sabino, F., Valladares, B., Hernández, E., Oliva, B., Del Cid, M., & Jayes Reyes, P. (2015). Determinación de arsénico y mercurio en agua superficial del lago de Atitlán. Ciencia, Tecnología y Salud, 2(2), 37-44. https://doi.org/10.36829/63CTS.v2i2.58 DOI: https://doi.org/10.36829/63CTS.v2i2.58

Rejmankova, E., Komarek, J., Dix, M., Komarkova, J., & Girón, N. (2011). Cyanobacterial blooms in Lake Atitlán, Guatemala. Limnologica, 41, 296-302. https://doi.org/10.1016/j.limno.2010.12.003 DOI: https://doi.org/10.1016/j.limno.2010.12.003

Runnegar, M.T.C. & Falconer, I.R. (1986). Effects of toxins from the cyanobacterium Microcystis aeruginosa on ultrastructural morphology and actin polymerization in isolated hepatocytes. Toxicon, 24(2), 109-115. https://doi.org/10.1016/0041-0101(86)90112-1 DOI: https://doi.org/10.1016/0041-0101(86)90112-1

Smith, J.L., Boyer, G.L., & Zimba, P.V. (2008). A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture, 280(1), 5-20. https://doi.org/10.1016/j.aquaculture.2008.05.007 DOI: https://doi.org/10.1016/j.aquaculture.2008.05.007

Sotero-Santos, R.B., Garcia Carvalho, E., Dellamano-Oliveira, & M.J., Rocha, O. (2008). Occurrence and toxicity of an Anabaena Bloom in a tropical reservoir (Southeast Brazil). Harmful Algae, 7(5), 590-598. https://doi.org/10.1016/j.hal.2007.12.017 DOI: https://doi.org/10.1016/j.hal.2007.12.017

World Health Organization. (1999) Toxic Cyanobacteria in Water. A Guide to Public Health Consequence, Monitoring and Management. Londres: E and FN Spon.

Published

2017-12-31

How to Cite

Axpuaca-Aspuac, E., Estrada-Palencia, E., Valladares-Jovel, B., Oliva-Hernández, B., Hernández-Hernández, E., & Pérez-Sabino, F. (2017). Secondary metabolites anda cyanotoxins produced by cyanobacteria from lake Atitlán. Revista Científica, 27(1), 9–20. https://doi.org/10.54495/Rev.Cientifica.v27i1.71

Issue

Section

Artículos originales