Modeling the dynamics of an AFM Atomic Force Microscopy cantilever

Authors

  • J. Matamoros Laboratorio Nacional de Nanotecnología LANOTEC, Centro Nacional de Alta Tecnología, San José
  • J. Vega-Baudrit Laboratorio de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica, Heredia

DOI:

https://doi.org/10.54495/Rev.Cientifica.v23i1.114

Keywords:

Simulation, dynamics, cantilever, AFM

Abstract

Currently some research involves computing, as well as experiment. On the other hand, computer simulation can provide valuable approaches to scientific problems. The atomic force microscopy (AFM) is one of the scanning probe microscopy techniques, which locally scans interatomic forces between a sample and a probe. The oscillatory motion of the cantilever can be simulated mathematically using a forced damped harmonic oscillator model. The fact that it is possible to mathematically approach the behaviour of the cantilever-sample system, allows them to be programmed and computed to predict the physical behavior at a theoretical level.

Downloads

Download data is not yet available.

References

Barcons, V., Verdaguer, A., Font, J., Chiesa, M., & Santos, S. (2012). Nanoscale Capillary Interactions in Dynamic Atomic Force Microscopy. The Journal of Physical Chemistry C, 116(14), 7757-7766. https://doi.org/10.1021/jp2107395 DOI: https://doi.org/10.1021/jp2107395

Binning, G. (1988). Atomic force microscope and method for imaging surfaces with atomic resolution.

Eslami, S., & Jalili, N. (2012). A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip - sample interaction forces. Ultramicroscopy, 117, 31-45. https://doi.org/10.1016/j.ultramic.2012.03.016 DOI: https://doi.org/10.1016/j.ultramic.2012.03.016

Eves, B. J., & Green, R. G. (2012). Limitations on accurate shape determination using amplitude modulation atomic force microscopy. Ultramicroscopy, 115, 14-20. https://doi.org/10.1016/j.ultramic.2012.01.016 DOI: https://doi.org/10.1016/j.ultramic.2012.01.016

García, R., & Perez, R. (2002). Dynamic atomic force microscopy methods. Surface Science Reports, 47. https://doi.org/10.1016/S0167-5729(02)00077-8 DOI: https://doi.org/10.1016/S0167-5729(02)00077-8

Gómez, C. J., & Garcia, R. (2010). Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM. Ultramicroscopy, 110 (6) , 626 - 633 . https://doi.org/10.1016/j.ultramic.2010.02.023 DOI: https://doi.org/10.1016/j.ultramic.2010.02.023

Gotsmann, B., & Fuchs, H. (2002). Dynamic AFM using the FM technique with constant excitation amplitude. Applied Surface Science, 188(3-4), 355-362. https://doi.org/10.1016/S0169-4332(01)00950-3 DOI: https://doi.org/10.1016/S0169-4332(01)00950-3

Hölscher, H., & Schwarz, U. D. (2007). Theory of amplitude modulation atomic force microscopy with and without Q-Control. International Journal of Non-Linear Mechanics, 42(4), 608-625. https://doi.org/10.1016/j.ijnonlinmec.2007.01.018 DOI: https://doi.org/10.1016/j.ijnonlinmec.2007.01.018

Kahrobaiyan, M. H., Ahmadian, M. T., Haghighi, P., & Haghighi, a. (2010). Sensitivity and resonant frequency of an AFM with sidewall and top-surface probes for both flexural and torsional modes. International Journal of Mechanical Sciences, 52(10), 1357-1365. https://doi.org/10.1016/j.ijmecsci.2010.06.013 DOI: https://doi.org/10.1016/j.ijmecsci.2010.06.013

Kahrobaiyan, M. H., Rahaeifard, M., & Ahmadian, M. T. (2011). Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope. Applied Mathematical Modelling, 35(12), 5903-5919. https://doi.org/10.1016/j.apm.2011.05.039 DOI: https://doi.org/10.1016/j.apm.2011.05.039

Korayem, M. H., Kavousi, a., & Ebrahimi, N. (2011). Dynamic analysis of tapping-mode AFM considering capillary force interactions. Scientia Iranica, 18(1), 121-129. https://doi.org/10.1016/j.scient.2011.03.014 DOI: https://doi.org/10.1016/j.scient.2011.03.014

Korayem, M. H., Noroozi, M., & Daeinabi, K. (2012). Control of an atomic force microscopy probe during nano-manipulation via the sliding mode method. Scientia Iranica, 19(5), 1346-1353. https://doi.org/10.1016/j.scient.2012.06.026 DOI: https://doi.org/10.1016/j.scient.2012.06.026

Lin, S.-M. (2006). Analytical solutions of the first three frequency shifts of AFM. https://doi.org/10.1016/j.ultramic.2006.01.005 DOI: https://doi.org/10.1016/j.ultramic.2006.01.005

Lin, S.-M., Lee, S.-Y., & Chen, B.-S. (2006). Closed-form solutions for the frequency shift of V-shaped probes scanning an inclined surface. Applied Surface Science, 252(18), 6249-6259. https://doi.org/10.1016/j.apsusc.2005.08.027 DOI: https://doi.org/10.1016/j.apsusc.2005.08.027

Lin, S.-M., Liauh, C.-T., Wang, W.-R., & Ho, S.-H. (2007). Analytical solutions of the frequency shifts of several modes in AFM scanning an inclined surface, subjected to the Lennard-Jones force. International Journal of Solids and Structures, 44(3-4), 799 - 810. https://doi.org/10.1016/j.ijsolstr.2006.05.024 DOI: https://doi.org/10.1016/j.ijsolstr.2006.05.024

Lin, S.-M., & Lin, C.-C. (2009). Phase shifts and energy dissipations of several modes of AFM: Minimizing topography and dissipation measurement errors. Precision Engineering, 33(4), 371-377. https://doi.org/10.1016/j.precisioneng.2008.10.005 DOI: https://doi.org/10.1016/j.precisioneng.2008.10.005

Lin, S.-M., & Wang, W.-R. (2009). Frequency shifts and analysis of AFM accompanying with coupled flexural–torsional motions. International Journal of Solids and Structures, 46(24), 4231-4241. https://doi.org/10.1016/j.ijsolstr.2009.08.016 DOI: https://doi.org/10.1016/j.ijsolstr.2009.08.016

Liu, W., Yan, Y., Hu, Z., Zhao, X., Yan, J., & Dong, S. (2012). Study on the nano machining process with a vibrating AFM tip on the polymer surface. Applied Surface Science, 258(7), 2620-2626. https://doi.org/10.1016/j.apsusc.2011.10.107 DOI: https://doi.org/10.1016/j.apsusc.2011.10.107

Melcher, J., Carrasco, C., Xu, X., Carrascosa, J. L., Gómez-Herrero, J., José de Pablo, P., & Raman, A. (2009). Origins of phase contrast in the atomic force microscope in liquids. Proc Natl Acad Sci U S A, 106 (33) , 13655 - 13660 . https://doi.org/10.1073/pnas.0902240106 DOI: https://doi.org/10.1073/pnas.0902240106

Pai, N.-S., Wang, C.-C., & Lin, D. T. W. (2010). Bifurcation analysis of a microcantilever in AFM system. Journal of the Franklin Institute, 347(7), 1353-1367. https://doi.org/10.1016/j.jfranklin.2010.06.008 DOI: https://doi.org/10.1016/j.jfranklin.2010.06.008

Pishkenari, H. N., & Meghdari, A. (2011). Effects of higher oscillation modes on TM-AFM measurements. Ultramicroscopy, 111(2), 107 - 116 . https://doi.org/10.1016/j.ultramic.2010.10.015 DOI: https://doi.org/10.1016/j.ultramic.2010.10.015

Raman, A., Melcher, J., & Tung, R. (2008). Cantilever dynamics in atomic force microscopy Dynamic atomic force microscopy , in essence, consists of a vibrating. 3(1), 20-27. https://doi.org/10.1016/S1748-0132(08)70012-4 DOI: https://doi.org/10.1016/S1748-0132(08)70012-4

Raul D. Rodiguez, E. L., Jaques Jupille. (2012). Probing the probe AFM tip-pro•ling via nanotemplates to determine.pdf. https://doi.org/10.1016/j.ultramic.2012.06.013 DOI: https://doi.org/10.1016/j.ultramic.2012.06.013

Schwartz, G. a., Riedel, C., Arinero, R., Tordjeman, P., Alegría, a., & Colmenero, J. (2011). Broadband nanodielectric spectroscopy by means of amplitude modulation electrostatic force microscopy (AM-EFM). Ultramicroscopy, 111(8), 1366 - 1369 . https://doi.org/10.1016/j.ultramic.2011.05.001 DOI: https://doi.org/10.1016/j.ultramic.2011.05.001

Solares, S. D. (2007). Single biomolecule imaging with frequency and force modulation in tapping-mode atomic force microscopy. The journal of physical chemistry. B, 111(9), 2125-2129. https://doi.org/10.1021/jp070067 DOI: https://doi.org/10.1021/jp070067+

Tamayo, J., Humphris, a. D., Owen, R. J., & Miles, M. J. (2001). High-Q dynamic force microscopy in liquid and its application to living cells. Biophysical journal, 81(1), 526 - 537 . https://doi.org/10.1016/S0006-3495(01)75719-0 DOI: https://doi.org/10.1016/S0006-3495(01)75719-0

Wang, C.-C., & Yau, H.-T. (2011). Application of the differential transformation method to bifurcation and chaotic analysis of an AFM probe tip. Computers & Mathematics with Applications, 61(8), 1957-1962. https://doi.org/10.1016/j.camwa.2010.08.019 DOI: https://doi.org/10.1016/j.camwa.2010.08.019

Published

2013-12-31

How to Cite

Matamoros, J. ., & Vega-Baudrit, J. (2013). Modeling the dynamics of an AFM Atomic Force Microscopy cantilever. Revista Científica, 23(1), 78–86. https://doi.org/10.54495/Rev.Cientifica.v23i1.114

Issue

Section

Artículos originales