Hidrólisis enzimática de residuos del procesamiento de surel (Trachurus lathami): caracterización de las fracciones obtenidas

Autores/as

  • Daniela Lamas Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Instituto de Investigaciones Marinas y Costeras - Consejo Nacional de Investigaciones Científicas y Técnicas (IIMyC-CONICET)
  • Elena Massa Agueda Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Instituto de Investigaciones Marinas y Costeras - Consejo Nacional de Investigaciones Científicas y Técnicas (IIMyC-CONICET),

DOI:

https://doi.org/10.54495/Rev.Cientifica.v30i2.277

Palabras clave:

Trachurus lathami, aprovechamiento de subproductos, proteínas, aceite, ácidos grasos Omega-3.

Resumen

El surel (Trachurus lathami) es un pez pelágico-costero que se captura de forma incidental durante la pesquería de caballa, constituyendo un descarte. La elaboración de conservas de surel descabezado y eviscerado es una estrategia utilizada para rentabilizar esta especie. Esta forma de comercialización genera una gran cantidad de residuos que constituyen una fuente rica de biocompuestos de interés comercial, entre los que se encuentran las proteínas y los ácidos grasos poliinsaturados de la serie omega-3. El objetivo del presente trabajo fue estudiar las fases acuosas proteica y oleosa lipídica obtenidas mediante hidrólisis enzimática de residuos de surel. Para la reacción se utilizaron las proteasas alcalinas comerciales Alcalase® 2.4L y Purazyme AS 60L. Las condiciones fueron pH 8.0 y 55 ºC, durante 2 h, en un reactor termostatizado. La fase acuosa obtenida mostró un contenido proteico de alrededor del 73 % con ambas enzimas. El rendimiento del aceite extraído fue de aproximadamente el 58 % con Alcalase® 2.4L y de alrededor del 68 % con Purazyme AS 60L. Dentro de los ácidos grasos poliinsaturados se destacó el contenido de eicosapentaenoico (EPA) y docosahexaenoico (DHA) para ambos aceites obtenidos. Esto sugiere que a partir de cabezas y vísceras de Trachurus lathami se pueden obtener compuestos de interés para el aprovechamiento integral de estas pesquerías.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adeoti, I. A., & Hawboldt, K. (2014). A review of lipid extraction from fish processing by-product for use as a biofuel. Biomass and Bioenergy, 63, 330-340.

https://doi.org/10.1016/j.biombioe.2014.02.011

Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. London: Elsevier Applied Science Publishers.

American Oil Chemists' Society., & Firestone, D. (2009). Official methods and recommended practices of the AOCS. Urbana, Ill: Autor.

Association of Official Analytical Chemists., & Helrich, K. (1990). Official methods of analysis of the Association of Official Analytical Chemists. Arlington, VA: Autor

Balti, R., Bougatef, A., El Hadj Ali, N., Ktari, N., Jellouli, K., Nedjar-Arroume, N., Dhulster, P., & Nasri, M. (2011). Comparative study on biochemical properties and Antioxidative activity of Cuttlefish (Sepia officinalis) protein hydrolysates produced by Alcalase and Bacillus licheniformis NH1 Proteases. Journal of Amino Acids, 2011, 1-11.

https://doi.org/10.4061/2011/107179

Belén Camacho, D. R., Moreno Álvarez M. J., García, D., Medina, C., & Sidorovas, A. (2007). Characterization of a protein enzymatic hydrolysate obtained from the colored 'caribe' fish (pygocentrus caribahumboldt, 1821). Interciencia, 32(3), 188-194.

Benítez, R., Ibarz, A., & Pagan, J. (2008). Hidrolizados de proteína: procesos y aplicaciones. Acta Bioquímica Clínica Latinoamericana, 42 (2), 227 - 236.

Bimbo, A. P. (1998). Directrices para caracterizar los aceites de pescado de calidad alimentaria. 9 (5). Hertfordshire, Reino Unido.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917.

https://doi.org/10.1139/o59-099

Bonilla-Méndez, J. R., & Hoyos-Concha J. L. (2018). Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids. Corpoica Ciencia y Tecnología Agropecuaria, 19(3), 621-644.

https://doi.org/10.21930/rcta.vol19_num2_art:684

Bougatef, A., Nedjar-Arroume, N., Ravallec-Plé, R., Leroy, Y., Guillochon, D., Barkia, A., & Nasri, M. (2008). Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chemistry, 111(2), 350-356.

https://doi.org/10.1016/j.foodchem.2008.03.074

Código Alimentario Argentino. (1969). Ley 18,284 del 28 de julio de 1969 (Argentina) Capítulo VI. Alimentos cárneos y afines. Carnes de consumo frescas y envasadas. https://www.argentina.gob.ar/sites/default/files/capitulo_vi_carneosactualiz_2019-2_.pdf

Comisión de las Comunidades Europeas. (2008, 17 de octubre) Decisión (CE) Nº 149/95. Establecimiento de valores límites de nitrógeno básico volátil total NBVT de determinadas categorías de productos pesqueros y los métodos de análisis que deben utilizarse, 8 de Marzo de 1995. Diario Oficial UE Nº 97. https://op.europa.eu/o/opportal-service/download-handler?identifier=91dc1ed4-6450-4a3c-8cab45009644715c&format=pdfa1b&language=es&productionSystem=cellar&part=

Comisión de las Comunidades Europeas (2008, 17 de octubre). Reglamento (CE) Nº 1022/2008. Valores límite de nitrógeno básico volátil total (NBVT) de determinadas categorías de productos pesqueros, Diario Oficial UE Nº 277. https://www.boe.es/doue/2008/277/L00018-00020.pdf

Chow, C. K. (Ed.). (2007). Fatty acids in foods and their health implications. CRC press.

https://doi.org/10.1201/9781420006902

Colla, L. M., & Prentice-Hernández, C. (2003). Congelamento e descongelamento-sua influencia sobre os alimentos vetor. Revista de Ciências Exatas e Engenharias, 13, 53-66.

Foh, M. B., Wenshui, X., Amadou, I., & Jiang, Q. (2012). Influence of pH shift on functional properties of protein isolated of tilapia (Oreochromis niloticus) muscles and of soy protein isolate. Food and Bioprocess Technology, 5(6), 2192-2200.

https://doi.org/10.1007/s11947-010-0496-0

Fournier, V., Destaillats, F., Hug, B., Golay, P.A., Joffre, F., Juanéda, P., Sémon, E., Dionisi, F., Lambelet, P., Sébédio, J.L., & Berdeaux, O. (2007). Quantification of eicosapentaenoic and docosahexaenoic acid geometrical isomers formed during fish oil deodorization by gas-liquid chromatography. Journal of Chromatography. A, 1154(1-2), 353-359.

https://doi.org/10.1016/j.chroma.2007.03.099

Gbogouri, G. A., Linder, M., Fanni, J., & Parmentier, M. (2006). Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. European Journal of Lipid Science and Technology, 108(9), 766-775.

https://doi.org/10.1002/ejlt.200600081

Ghaly, A. E., Ramakrishnan, V. V., Brooks, M. S., Budge, S. M., & Dave, D. (2013). Fish Processing wastes as a potential source of proteins, amino acids and oils: a critical review. Journal of Microbial & Biochemical Technology, 5(4), 107-129.

Glowacz-Rozynska, A., Tynek, M., Malinowska, E., Martysiak, D., Pawlowicz, R., & Kolodziejska, I. (2016). Comparison of oil yield and quality obtained by different extraction procedures from salmon (Salmo salar) processing byproducts. European Journal of Lipid Science and Technology, 118(11), 1759-1767.

https://doi.org/10.1002/ejlt.201500269

Guerard, F. (2006). Enzymatic methods for marine by-products recovery. In F. Shahidi, Ed. Maximising the value of marine by-products. Woodhead Publishing.

https://doi.org/10.1201/9781439824542.ch6

Gu, Y., Nieves, J. W., Stern, Y., Luchsinger, J. A., & Scarmeas, N. (2010). Food combination and Alzheimer disease risk: a protective diet. Archives of Neurology, 67(6), 699-706.

https://doi.org/10.1001/archneurol.2010.84

Hasnul Hadi, M.H., Ker, P.J., Thiviyanathan, V.A., Tang, S.G.H., Leong, Y.S., Lee, H.J., Hannan, M.A., Jamaludin, M.Z., Mahdi, M.A. (2021). The Amber-Colored Liquid: A Review on the Color Standards, Methods of Detection, Issues and Recommendations. Sensors, 21, 6866.

https://doi.org/10.3390/s21206866

Hodge, W. G., Schachter, H. M., Barnes, D., Pan, Y., Lowcock, E. C., Zhang, L., Sampson, M., Morrison, A., Tran, K., Miguelez, M., & Lewin, G. (2006). Efficacy of omega-3 fatty acids in preventing age related macular degeneration: a systematic review. Ophthalmology, 113(7), 1165-1172.

https://doi.org/10.1016/j.ophtha.2006.02.043

International organization for standardization. (2011). 12966-2:2017. Animal and vegetable fats and oils - Gas chromatography of fatty acid methyl esters - Part 2: Preparation of methyl esters of fatty acids. https://www.iso.org/standard/72142.html

Kechaou, E. S., Dumay, J., Donnay-Moreno, C., Jaouen, P., Gouygou, J. P., Bergé, J. P., & Amar, R. B. (2009). Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: effects on lipid distribution and amino acid composition. Journal of Bioscience and Bioengineering, 107(2), 158-64.

https://doi.org/10.1016/j.jbiosc.2008.10.018

Kien, C. L., Bunn, J. Y., Poynter, M. E., Stevens, R., Bain, J., Ikayeva, O., Fukagawa, N. K., Champagne, C. M., Crain, K. I., Koves, T. R., Muoio, D. M. (2013). A lipidomics analysis of the relationship between dietary fatty acid composition and insulin sensitivity in young adults. Diabetes, 62(4), 1054-1063.

https://doi.org/10.2337/db12-0363

Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40, 43-81.

https://doi.org/10.1080/10408690091189266

Lamas, D., & Massa, A. (2017). Enzymatic degumming of ray liver oil using phospholipase a1: efficiency, yield and effect on physicochemical parameters. International Journal of Bioorganic Chemistry, 2(3), 87-93.

Lamas, D., & Massa, A. (2019). Ray liver oils obtained by different methodologies: characterization and refining. Journal of Aquatic Food Product Technology, 28(3), 1-15.

https://doi.org/10.1080/10498850.2019.1605554

Laroque, D., Chabeaud, A., & Guérard, F. (2008). Antioxidant capacity of marine protein hydrolysates. En J Bergé J. P. (Ed). Added value to fisheries waste (147-161pp.) Transworld Research Network Publisher.

Linder, M., Fanni, J., Parmentier, M. (2005). Proteolytic extraction of salmon oil and PUFA concentration by lipases. Marine Biotechnology, 7(1), 70-76.

https://doi.org/10.1007/s10126-004-0149-2

Lee, J. H., O'Keefe, J. H., Lavie, C. J., Marchioli R., & Harris, W. S. (2008). Omega-3 fatty acids for cardioprotection. Mayo Clinic Proceedings, 83, 324-332.

https://doi.org/10.4065/83.3.324

Massa, A. E., Manca, E. A., Mansilla, A. Y., Mendieta, J. R., & Casalongué, C. A. (2016). Hidrolizados proteicos de pescado a partir de residuos de la industria pesquera con potencialidad en Biotecnología. En: Vinculación Tecnológica IV (28-32pp.). De la Universidad al medio socio-productivo.

Mbatia, B., Adlercreutz, D., Adlercreutz, P., Mahadhy, A., Mulaa, F., & Mattiasson, B. (2010). Enzymatic oil extraction and positional analysis of Omega 3 fatty acids in Nile perch and salmon heads. Process Biochemistry, 45(5), 815- 819.

https://doi.org/10.1016/j.procbio.2010.02.010

Márquez Figueroa, Y. V., Cabello, A. M., Villalobos, L. B., Guevara, G., Figuera García, B.E., Vallenilla González, O.M. (2006). Cambios físicos-químicos y microbiológicos observados durante el proceso tecnológico de la conserva de atún. Zootecnia Tropical, 24(1), 17-29.

Navarro-García, G., González-Félix, M. L., Márquez-Farías, F., Bringas-Alvarado, L., Pérez-Velazquez, M., Montoya-Laos, J. M., & Moreno-Silva, B. (2014). Lipid content and fatty acid composition of the liver from the rajiforms Urotrygon chilensis, Urobatis halleri, Rhinobatos glaucostigma, Rhinoptera steindachneri and Dasyatis dipeteura captured in Sinaloa, México. International Food Research Journal, 21(1), 229-235.

Noakes, P. S., Vlachava, M., Kremmyda, L. S., Diaper, N. D., Miles, E. A., Erlewyn-Lajeunesse, M., Williams, A. P., Godfrey, K. M., & Calder, P. C. (2012). Increased intake of oily fish in pregnancy: effects on neonatal immune responses and on clinical outcomes in infants at 6 months. American Journal of Clinical Nutrition, 95(2), 395-404.

https://doi.org/10.3945/ajcn.111.022954

Palmer, D. J., Sullivan, T., Gold, M. S., Prescott, S. L., Heddle, R., Gibson, R. A., & Makrides, M. (2012). Effect of n-3 long chain polyunsaturated fatty acid supple mentation in pregnancy on infants' allergies in first year of life: randomised controlled trial. British Medical Journal, 344, 184.

https://doi.org/10.1136/bmj.e184

Rubio-Rodríguez, N., Diego, S. M., Beltrán, S., Jaime, I., Sanz, M. T., & Rovira, J. (2012). Supercritical fluid extraction of fish oil from fish by-products: a comparison with other extraction methods. Journal of Food Engineering, 109(2), 238-248.

https://doi.org/10.1016/j.jfoodeng.2011.10.011

Tironi, V. 2005. Rancidez oxidativa en salmón de mar. Interacción lípidos oxidados- proteínas. (Tesis doctoral). Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Plata, Argentina.

Valenzuela, A., Sanhueza, J., & De la Barra, F. (2012). El aceite de pescado: ayer un desecho industrial, hoy un producto de alto valor nutricional. Revista Chilena de Nutrición, 39 (2), 201-209.

https://doi.org/10.4067/S0717-75182012000200009

Zhong, Y., Madhujith, T., Mahfouz, N., & Shahidi, F. (2007). Compositional characteristics of muscle and visceral oil from steelhead trout and their oxidative stability. Food Chemistry, 104, 602-608.

https://doi.org/10.1016/j.foodchem.2006.12.036

Publicado

26-08-2022

Cómo citar

Lamas, D. ., & Massa Agueda, E. . (2022). Hidrólisis enzimática de residuos del procesamiento de surel (Trachurus lathami): caracterización de las fracciones obtenidas. Revista Científica, 30(2). https://doi.org/10.54495/Rev.Cientifica.v30i2.277

Número

Sección

Artículos originales